
28 The Delphi Magazine Issue 48

Under Construction:
Delphi Goes Dynamic
by Bob Swart

In this month’s column, we’ll see
how we can dynamically create

components, both visual and
non-visual, as well as event han-
dlers for these components. Along
the way, I’ll show some practical
(and sometimes fun) implementa-
tions. In short: Delphi goes
dynamic.

Dynamic Components
There are a number of components
that I create dynamically almost
every day: database access com-
ponents. To create a component
dynamically all we need to do is
call the Create constructor. For a
simple TObject, this constructor
doesn’t even need a parameter, so
the code is quite easy:

DynamicObject :=
TObject.Create;

Unfortunately, for components
(visual or not) we need to pass an
argument to Create, to specify the
owner of the new component. If
you dynamically create compo-
nents on a form, then the form will
typically be the owner. If you
dynamically create components
otherwise (like in a console appli-
cation), then you will typically not
use an owner. For now, let’s assume
the component has no owner, so
we can pass nil as the value for the
argument to the constructor:

DynamicTable :=
TTable.Create(nil);

When creating dynamic compo-
nents, you must also be sure to
delete them (in order to avoid
memory leakage). In order to make
sure you always delete a dynami-
cally created component you
should use a try...finally block,
which can be seen in Listing 1.

Although it’s usually the best
option, note that we don’t have to

declare the dynamic component as
type TTable right from the start.
Suppose we need to create a TTable
in one situation, but a TQuery in
another. Then declaring the com-
ponent of type TDataSet is enough,
and the code to dynamically create
a TTable or TQuery instance can be
seen in Listing 2.

We can optimise this code fur-
ther by placing the if statement
inside the try...finally block
(whether we’re creating a TTableor
a TQuerywe should always call Free,
of course). And inside the loop we
can depend on the RTTI informa-
tion (using IS and AS) to work with

the dynamic dataset component in
those cases where a TTable and
TQuery differ (see Listing 3).

Dynamic Visual Components
Creating non-visual components is
easy. They often don’t require an
owner, and hence the Create con-
structor has no argument. Some-
times, however, a component can
be ‘owned’ by another component,
in which case the Create construc-
tor takes an argument: the owner.
A benefit of having an owner is that
the owner is responsible for

var DynamicTable: TTable;
begin
DynamicTable := TTable.Create(nil);
try
... { using DynamicTable }

finally
DynamicTable.Free;
DynamicTable := nil

end
end;

➤ Above: Listing 1 ➤ Below: Listing 2

var
DynamicDataSet: TDataSet;

begin
DynamicDataSet := nil;
if CreateTable then begin
DynamicDataSet := TTable.Create(nil);
try
... { DynamicDataSet AS TTable }

finally
DynamicDataSet.Free;
DynamicDataSet := nil

end
end else begin
{ no Table - Query }
DynamicDataSet := TQuery.Create(nil);
try
... { DynamicDataSet AS TQuery }

finally
DynamicDataSet.Free;
DynamicDataSet := nil

end
end

end;

var DynamicDataSet: TDataSet;
begin
DynamicDataSet := nil;
try
if CreateTable then
DynamicDataSet := TTable.Create(nil)

else DynamicDataSet := TQuery.Create(nil)
... { DynamicDataSet AS TTable/TQuery }

finally
DynamicDataSet.Free;
DynamicDataSet := nil

end
end;

➤ Listing 3

30 The Delphi Magazine Issue 48

cleaning up the component itself
(ie the owner will delete all the
components it owns).

In order to create a new button
(in response to a button click
event, for example) we need to
write the code from Listing 4.

This code indeed creates a new
button, but we won’t be able to see
it on the form. That’s because any
visual component that gets cre-
ated must have a parent: a window
to position itself upon. And while
the constructor gets an argument
to use as the owner, there’s no
argument that you can pass for the
parent. So, when dynamically cre-
ating a visual component, the first
thing we need to do is assign the
parent, for example to the form or a
panel on which the component
should show itself. In our example
(see Listing 4), we should perform
the following action right after the
button is created:

Parent := Self;

This will make sure that the but-
ton’s parent is the form itself (the
Self pointer inside the method),
and hence the button will be
shown as a child control of the
form (and positioned on the form
according to the Top and Left prop-
erties of the new button itself).

Usually, the form is the owner of
every control placed on it, but not
the parent of every control placed
on it (you can put a panel on the
form, which has the form as its
parent, and then a number of con-
trols on top of the panel, meaning
their parent is now the panel, and
not the form). The form as owner
means that every visual control
will be deleted automatically when
the form itself is deleted.

Dynamic Events
Once we have created dynamic
components, it’s time to go a step
further and see if we can assign
values to event handlers. So far,
we’ve been able to dynamically
create a component and set a few
property values, but how do we
actually assign an event handler?
Well, it turns out to be not much
more complex than assigning a
regular property value (after all,

procedure TForm1.FormClick(Sender: TObject);
begin
with TButton.Create(Self) do begin
Caption := 'Hello, world!';
Top := 100;
Left := 100;

end
end;

➤ Listing 4
an OnClick event handler is nothing
more than a property OnClick of
type TNotifyEvent, which is defined
as follows:

type
TNotifyEvent =
procedure(Sender: TObject)
of object;

The of object part here means that
the method must be part of an
object (ie a method that gets a Self
pointer as an invisible first argu-
ment). The TNotifyEvent type is the
type for events that only have the
sender as parameter (ie the object
that caused the event to fire).

In order to create a custom
TNotifyEvent method, we can type
the following declaration in the
private section of the form (thus
making it a method of object):

procedure OnClickEventHandler(
Sender: TObject);

Go to this line and hit Ctrl+Shift+C
to generate the source code for the
empty event handler. Now, assign
the dynamic button’s OnClick
event handler (placeholder) to the
event handler (routine) we’ve just
written, as follows:

OnClick := OnClickEventHandler;

If we run the combined application,
we start with an empty form. If we
click on the form, a new dynamic
button is created and placed upon
the form. If we then click on the
button, the OnClick event handler
(assigned to the method OnClick-
EventHandler) is fired, resulting in a
messagebox showing Hello,
world!. We have dynamic visual
components with dynamic event
methods.

Final Example
As a final example, let’s consider a
game of memory. The game con-
sists of a playing board with an

even number of blank buttons.
Each button is associated with a
specific event (image, sound,
movie, etc), and every button has a
‘clone’ button, that is, for every
button with a specific image
there’s exactly one other button
with the same image (the same
holds for sound waves or video
movies). The objective of the game
is to find pairs of buttons, by click-
ing on two buttons, and if they are
the same, then the buttons disap-
pear and the player scores (and
may continue), otherwise it’s the
other player’s turn to try. You can
even play this game by yourself, in
which case the number of turns
divided by the number of pairs is
an indication of your skill level.

How would this game be an
example of creating dynamic com-
ponents and event handlers? Well,
I’m glad you asked. The thing is:
the layout of the board is not fixed.
Erik, my 5-year-old son, usually
starts with a 6 x 4 board (24 but-
tons), but Tasha, my little daugh-
ter, prefers the 4 x 3 board (only 12
buttons). This means that we don’t
know the number of buttons
beforehand. In fact, we’d need a
two-dimensional dynamic array of
buttons to store them:

var
Buttons:
Array of Array of TButton;

Once the player has specified the
dimensions, we can allocate
memory for the button pointers
(using the SetLength method), and
then dynamically create each indi-
vidual button. Each set of two but-
tons get the same Tag value (so
these buttons ‘belong to’ each
other), and a question mark as the
caption. All this is implemented in
method CreateBoard (see Listing
5), where a default OnClick event
handler is also assigned. Once the

August 1999 The Delphi Magazine 31

two dimensional set of buttons is
created, we need to shuffle them,
of course (otherwise they’re nicely
paired next to each other, an easy
game, even for Tasha). This is
implemented in the Shuffle
routine.

After all these events (if you will
pardon the pun), the game is ready
to start. Each button has a method

called FirstButtonClick
which is assigned to its
OnClick event handler.
This method makes
sure the caption of the
button is shown, and
the game gets ready to
respond to the second
button click. In order to
do so, the event handler
of each button must be
replaced by the method
SecondButtonClick. We
can do this by iterating

through the Components array of the
Form itself. If a component is of
type TButton and still Enabled, then
we should assign SecondButton-
Click to the OnClick event handler
property. All this is implemented in
the method FirstButtonClick, of
course.

Finally, once the SecondButton-
Click method has been installed as
a new dynamic event handler, the
game just waits for the user to click

➤ Figure 1

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

const
_Caption =
'The Delphi Magazine #48 - Dynamic Game of Memory: %d';

type
TArrayArrayButton = Array of Array of TButton;
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);

private
Turns: Integer;
procedure Shuffle(Button: TArrayArrayButton);
procedure FirstButtonClick(Sender: TObject);
procedure SecondButtonClick(Sender: TObject);

public
procedure CreateBoard(X,Y: Integer);

end;
var
Form1: TForm1;

implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
Randomize;
Turns := 0;
CreateBoard(6,4)

end;
procedure TForm1.CreateBoard(X, Y: Integer);
var
i,j: Integer;
Button: TArrayArrayButton;

begin
SetLength(Button, X);
for i:=0 to Pred(X) do begin
SetLength(Button[i], Y);
for j:=0 to Pred(Y) do begin
Button[i,j] := TButton.Create(Self);
Button[i,j].Parent := Self;
Button[i,j].Left := 6 + (600 div X) * i;
Button[i,j].Width := (600 div X) - 8;
Button[i,j].Top := 6 + (400 div Y) * j;
Button[i,j].Height := (400 div Y) - 8;
Button[i,j].Tag := 1 + (j * X + i) div 2;
Button[i,j].Caption := '?';
Button[i,j].OnClick := FirstButtonClick

end
end;
Shuffle(Button)

end;
procedure TForm1.Shuffle(Button: TArrayArrayButton);
var
i: Integer;

X,Y: Integer;
X1,X2,Y1,Y2: Integer;

begin
X := Length(Button);
Y := Length(Button[0]);
for i:=1 to 1001 do begin
X1 := Random(X);
X2 := Random(X);
Y1 := Random(Y);
Y2 := Random(Y);
Tag := Button[X1,Y1].Tag;
Button[X1,Y1].Tag := Button[X2,Y2].Tag;
Button[X2,Y2].Tag := Tag

end
end;
procedure TForm1.FirstButtonClick(Sender: TObject);
var i: Integer;
begin
Tag := (Sender AS TButton).Tag;
(Sender AS TButton).Caption := IntToStr(Tag);
for i:=0 to Pred(ComponentCount) do
if Components[i] IS TButton then
if (Components[i] AS TButton).Enabled then
(Components[i] AS TButton).OnClick :=
SecondButtonClick { assign new event handler }

end;
procedure TForm1.SecondButtonClick(Sender: TObject);
var i: Integer;
begin
Inc(Turns);
Caption := Format(_Caption,[Turns]);
(Sender AS TButton).Caption :=
IntToStr((Sender AS TButton).Tag);

if (Sender AS TButton).Tag = Tag then begin
{ the same }
(Sender AS TButton).Enabled := False;
for i:=0 to Pred(ComponentCount) do
if Components[i] IS TButton then
if (Components[i] AS TButton).Tag = Tag then
(Components[i] AS TButton).Enabled := False

end else begin
{ not the same; hide again }
Sleep(1000);
for i:=0 to Pred(ComponentCount) do
if Components[i] IS TButton then
if (Components[i] AS TButton).Enabled and
((Components[i] AS TButton).Caption <> '?') then
(Components[i] AS TButton).Caption := '?'

end;
for i:=0 to Pred(ComponentCount) do
if Components[i] IS TButton then
if (Components[i] AS TButton).Enabled then
(Components[i] AS TButton).OnClick :=
FirstButtonClick { assign new event handler }

end;
end.

on another button. If this button
has the same Tag value (ie the two
buttons belong together), then
both are disabled (so you see their
caption with a grey/disabled font).
Otherwise, the game waits about a
second using the Sleep API, before
clearing the captions of the two
buttons, replacing them with the
original question marks again.
Finally, the event handlers of the
remaining enabled buttons must
be set to the FirstButtonClick
event handler, of course (as it’s
now the turn for the first button to
be clicked again). All this is done in
the SecondButtonClick method.

The complete source code of the
memory game can be seen in
Listing 5.

Note that, currently, the board
cannot be resized. In order to
implement this, you’d need to
override the SetBounds method,

➤ Listing 5

32 The Delphi Magazine Issue 48

and make sure the buttons resize
according to the same logic that’s
used in the CreateBoard method.
Also, once the game is over, there’s
no way to restart (not even with
the same board layout). One way
to implement this feature is to
dynamically delete all the button
components and then call
CreateBoard again (maybe asking
for the new dimensions first). I
leave it as an exercise for the
reader to implement these two
additional features.

Finally, the example I’ve pre-
sented here uses a simple number,
and not an image or sound waves
(let alone a video movie). It’s not
hard to implement other behav-
iour inside the events, of course,
but the images I downloaded from
the Disney and Warner Brothers
websites would probably violate
their copyrights if I were to distrib-
ute them with the source code on
this month’s disk...).

Next Time
We’ve seen how to dynamically
create and destroy components,

and even how to assign dynamic
event handlers to them (and how
to change event handlers ‘on the
fly’). These techniques can prove
quite handy at times, especially
when certain boundaries are
unknown beforehand. With the
introduction of dynamic arrays in
Delphi 4, we can now even have
dynamic arrays of dynamic but-
tons: a big step forward!

By the way, there’s still one way
to cheat this game (as Tasha
quickly demonstrated): just click
on the same button twice, which
satisfies the check that the Tag
property of the second button is
equal to the one of the first button,
and subsequently disables not
only this button, but the associat-
ed button as well. Only a minor
glitch, but Tasha was able to find it
in a few seconds (by double-
clicking on the same button right
from the start). Of course, the
simple fix is to include a test in the
SecondButtonClick event handler to
see if the caption of the second
button is still a question-mark, and
not a number already...

Next time, I’ll focus on Delphi
efficiency again, specifically the
network. After CPU, memory and
graphic operation optimisations
on standalone machines, we must
face the truth: we’re no longer
alone. Distributed application effi-
ciency depends on more than a
standalone application. And that’s
where the network comes in. And
bandwidth. And the amount of
data being transported along the
wire, of course. Until that time, stay
tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com, email him at
drbob@chello.nl) is a technical
consultant and webmaster for
TAS Advanced Technologies
(www.tas-at.com) using Delphi,
JBuilder and C++Builder, and
freelance technical author. In his
spare time, Bob likes to watch
video tapes of Star Trek Voyager
and Deep Space Nine with his
5-year-old son Erik Mark Pascal
and his 2.5-year-old daughter
Natasha Louise Delphine.

	Dynamic Components
	Dynamic Visual Components
	Dynamic Events
	Final Example
	Next Time

